Каких животных называют электрическими? Електрические поля в жизни рыб Категории электрогенных рыб

Электрические рыбы . Люди ещё в глубокой древности обратили внимание, что некоторые рыбы как-то по особенному добывают себе пищу. И лишь совсем недавно, по историческим меркам, стало понятно, как они это делают. Оказывается есть такие рыбы, которые создают электрический разряд. Этот разряд парализует или убивает других рыб и даже совсем не маленьких животных.

Плывёт такая рыбина, плывёт никуда не торопясь. Как только недалеко от неё оказывается другая рыба, создаётся электрический разряд. Всё, обед готов. Можно подплывать и заглатывать парализованную или убитую электрическим током рыбу.

Как же это получается у рыб создавать электрический импульс? Дело в том, что в организме таких рыб имеются самые настоящие батарейки. Их количество и размеры у рыб разные, но принцип действия один и тот же. Именно по такому же принципу устроены современные аккумуляторные батарейки.

Собственно, современные батареи и созданы по образцу и подобию рыбных. Два электрода, между ними электролит. Этот принцип был однажды подсмотрен у электрического ската. много ещё интересных неожиданностей таит природа матушка!

Сегодня в мире насчитывается более трёхсот видов электрических рыб. Они имеют самые разные размеры и вес. Всех их объединяет способность создавать электрический разряд или даже целую серию разрядов. Но всё же считается, что самыми мощными электрическими рыбами являются скаты, сомы и угри.

Электрические скаты имеют плоскую голову и тело. Голова чаще в форме диска. Они имеют небольшой хвост с плавником. Электрические органы расположены по бокам головы. Ещё пара небольших электрических органов расположены на хвосте. Они есть даже у тех скатов, которые не относятся к электрическим.

Электрические скаты могут вырабатывать электрический импульс напряжением до четырёхсот пятидесяти вольт. Этим импульсом они могут не только обездвиживать, но и убивать небольших рыб. Человеку, если он попадёт в зону действия импульса, тоже мало не покажется. Но человек, скорее всего останется жив, хотя наверняка испытает неприятные в своей жизни моменты.

Электрические сомы , так же как и скаты, создают электрический импульс. Его напряжение может быть у крупных сомов, так же как и у скатов, до 450 вольт. При поимке такого сомика, так же можно получить весьма ощутимый удар током. Электрические сомы обитают в водоёмах Африки и достигают размеров до 1 метра. Их вес может быть до 23 килограммов.

Но, самая опасная рыба обитает в водоёмах Южной Америки. Это электрические угри . Они бывают очень немаленьких размеров. Взрослые особи достигают в длину трёх метров и веса до двадцати килограммов. Эти электрические гиганты могут создавать электрический импульс напряжением до одной тысячи двухсот вольт.

Импульсом с таким напряжением они могут убить и довольно крупных животных, оказавшихся некстати рядом. Такой же исход может ожидать и человека. Мощность электрического разряда достигает шести киловатт. Мало не покажется. Вот такие они — живые электростанции.

Использование рыбами электрических полей

Электрическая локация

Еще Дарвину было известно, что некоторые рыбы имеют небольшие электрические органы. Разряды, излучаемые ими, настолько слабы, что казались естествоиспытателям совершенно бесполезными. Эти органы считались псевдоэлектрическими, рудиментарными. Однако в 1958 г. Лиссман показал, что рыбы с «рудиментарными» электрическими органами используют свои слабые электрические поля для локации и взаимосвязи. Исследуя слабоэлектрических рыб, Лиссман обнаружил две характерные особенности их поведения. Первая заключается в том, что при плавании такие рыбы стремятся поддерживать неизменным положение горизонтальной оси тела (передвигаются они, как правило, за счет ундулирующих, т. е. колебательных, волнообразных движений спинного плавника). Вторая особенность - четкая локация помещенных в воду рядом с рыбами различных предметов.

Особенно детально Лиссман изучил поведение гимнарха. Плавая, гимнарх никогда не ударяется ни о препятствия на своем пути, пи о стенки аквариума. Интересен способ, каким гимнарх исследует незнакомые объекты. Он поворачивается к нему хвостом и его кончиком как бы ощупывает его на расстоянии с разных сторон. Как известно, в хвосте у гимнарха находится электрический орган, который генерирует импульсы частотой 300 Гц. Лиссман предположил, что именно этот орган участвует в локации.

Выше говорилось о боковой линии - специализированной системе локации объектов, которым обладают рыбы. Однако, используя ее, рыба не может обнаружить неподвижные объекты, если она не движется и не создает потоки воды. Не может она также различать объекты, геометрически идентичные по форме и размеру, но отличающиеся по электрическим свойствам. Между тем опыты на гимнархе показали, что слабоэлектрические рыбы обладают такими способностями.

Эти опыты заключались в следующем. Рыб, длина одной из которых составляла 52 см, а другой - 54 см, помещали в большой аквариум, оборудованный специальной установкой (рис. 16). Для сравнения использовали геометрически идентичные цилиндрические сосуды длиной 15 см, с внутренней емкостью 80 см 3 . Их электропроводность изменяли, помещая внутрь электролиты и диэлектрики. (Сосуды были изготовлены из материала с электропроводностью, близкой электропроводности воды)

За каждым сосудом на тонкой проволоке, связанной с регистрирующим устройством, подвешивали кусочки пищи. Когда гимнарх захватывал пищу, проволочка натягивалась, благодаря чему прикрепленное к ее концу записывающее острие перемещалось, и на вращающемся барабане фиксировался подход рыбы к соответствующему объекту. У рыб вырабатывали условный рефлекс, «поощряя» пищей за правильный выбор и «наказывая» ударом палочки за неправильный.

В первой серии опытов рыбы быстро научились отличать сосуды с более высокой электропроводностью (с аквариумной водой) от сосудов с диэлектрическими свойствами (с парафином, воздухом и дистиллированной водой).

Во второй серии опытов исследовали способность рыб различать геометрически и оптически идентичные сосуды с различной электропроводностью. В специальных опытах выяснялась возможность различения рыбами электрически одинаковых сосудов с различными реактивами. Было установлено, что гимнарх различает геометрически и оптически одинаковые сосуды с разной электропроводностью, но не может отличить сосуды, содержащие разные химические вещества.

Определялась также степень чувствительности гимнарха к объектам с разной электропроводностью. Оказалось, что гимнарх не может различать геометрически идентичные объекты, имеющие одинаковую электропроводность, но различную внутреннюю структуру. Наименьший объект, электрически отличимый гимнархом от воды, представлял собой стеклянную трубочку диаметром 0,2 см.

Рис. 16. Установка дли выработки у слабоэлектрических рыб условных рефлексов на объекты одинаковых размеров

1 - сосуды с различной электропроводностью, 2 - кусочки пищи, 3 - регистрирующее устройство

Таким образом, было установлено, что при локации различных объектов гимнарх использует электрический орган. Каков же механизм электрической локации у рыб?

В 1950 г. К. Коэтс высказал предположение, что электрический угорь использует радиолокационный прием. Как известно, принцип действия радиолокаторов основан на измерении времени, истекшего между моментами посылки электромагнитного импульса и возвращения эхо-сигнала, отраженного от препятствия (объекта локации). Зная скорость распространения электромагнитных волн (300 тыс. км/с), можно приблизительно вычислить расстояние до обнаруженного объекта. По мнению Коэтса, и угорь каким-то образом ощущает время между посылкой импульса и возвращением эхо-сигнала.

Несостоятельность этой гипотезы очевидна с точки зрения как физики, так и физиологии. Рыбы генерируют разряды электрического тока, который не отражается от предметов. Конечно, некоторое количество энергии разряда уходит на образование электромагнитных волн. Однако в воде они затухают с увеличением расстояния. Кроме того, невозможно представить, чтобы рыба могла «измерить» промежуток времени между посылкой и приемом импульса. Так, если объект обнаруживается на расстоянии 1 м, то сигнал должен пройти 1 м до объекта и столько же обратно, т. е. 2 м. Нетрудно подсчитать, что время прохождения такого расстояния электромагнитной волной составит одну пятнадцатимиллионную секунды. Такие ничтожные промежутки времени живые существа различать не могут.

Иную гипотезу о механизме электрической локации рыб выдвинул Лиссман, тщательно изучавший ориентацию гимнарха. Он обнаружил, что рыба создает вокруг себя характерное электрическое поле дипольного типа. Если в воде нет никаких объектов, диполь симметричен. Его конфигурация зависит и от электропроводности воды и от искажений, которые возникают, если в электрическом поле находятся объекты, отличающиеся по своей электропроводности от воды. При этом объекты с электропроводностью большей, чем у воды, сгущают вокруг себя электрическое поле, а объекты с меньшей электропроводностью рассредоточивают его (рис. 17). Изменения конфигурации поля влечет за собой соответствующие сдвиги в распределении электрических потенциалов по поверхности тела рыбы. Рыба воспринимает их с помощью электрических рецепторов, расположенных в области головы, благодаря чему определяет местонахождение объекта.

Специальные опыты показали, что у гимнарха (гимнотуса, гнатонемуса и мормируса) чувствительность к внешним электрическим полям значительно выше, чем у других рыб. Гимнарх способен воспринимать внешнее электрическое поле напряженностью в сотые доли микровольта на сантиметр. Именно этим объясняются описанные выше результаты опытов с гимнархом по определению геометрически идентичных объектов с различной электропроводностью.

Таким образом, гимнарх производит локацию объектов с помощью особого электрического механизма. Чтобы проверить эффективность его работы, Лиссман поставил модельный эксперимент в аквариуме. С помощью двух неподвижно закрепленных электродов, на которые от генератора подавались импульсы, аналогичные импульсам гимнарха, в воде создавалось электрическое поле дипольного типа. К осциллографу подключались 25 воспринимающих электродов, расположенных по форме тела гимнарха. Когда в смоделированное дипольное поле гимнарха вносили различные объекты, потенциалы на воспринимающих электродах значительно изменялись.

Рис. 17. Распределение силовых линий в электрической поле гимнарха под влиянием объекта со свойствами диэлектриков (а) в проводника (б)

Оказалось, что подобным методом вполне возможно «лоцировать» крупные разнообразные объекты на небольшом расстоянии. Добиться такой же точной локации мелких объектов, какая наблюдается у гимнарха, не удалось. Однако эта способность гимнарха связана с деятельностью тонких механизмов рецепции и, в частности, с тем, что он может выделять полезные электрические сигналы из шума.

Модельные опыты показали, что незначительные перемещения воспринимающих электродов в пространстве существенно влияют на изменения потенциалов. Этим объясняется своеобразный способ плавания всех слабоэлектрических рыб - они стремятся сохранять положение оси своего тела неизменным, чтобы иметь возможность осуществлять локацию.

В последнее время экспериментально установлено, что электрическую локацию, сходную с локацией гимнарха, использует большинство видов гимнотовидных и мормирообразных, в том числе и электрический угорь.

Некоторые предварительные данные говорят о том, что подобная форма ориентации в пространстве присуща и другим рыбам: обыкновенным скатам, морской миноге, а также некоторым неэлектрическим рыбам, имеющим электрорецепторы,- осетровым, сомовым.

Описанный механизм электрической локации может быть смоделирован и использован в технике в практических целях, например для отыскания под водой металлических предметов, для регистрации рыб, проходящих через рыбопропускные сооружения, и т. д.

Электрические поля - средство общения рыб

С помощью электрических полей рыбы могут обмениваться различной информацией. В настоящее время значение таких полей в общении рыб экспериментально установлено лишь для некоторых из них. Электрические сигналы можно разделить на сигналы опознавания пищевых объектов, групповые, агрессивно-оборонительные, межполовые опознавательные и стайные, с помощью которых рыбы собираются вместе.

Рассмотрим каждую из этих групп сигналов в отдельности.

Сигналы опознавания пищевых объектов. Многие виды рыб имеют электрорецепторы с высокой чувствительностью, благодаря чему могут использовать биоэлектрические разряды других рыб. Известно, например, что акулы, отыскивая пищу, воспринимают различные сигналы, воспроизводимые их жертвами. Они реагируют на низкочастотные колебания, создаваемые рыбами, и на выделяемые ими химические вещества. Однако большинство исследователей отмечают, что акул привлекают какие-то сигналы, испускаемые их жертвами во время рывков и бросков при испуге (так называемая эманация страха). Характерно, что именно эти движения рыб сопровождаются наиболее сильными биоэлектрическими разрядами. В связи с этим возникло предположение, что акулы и скаты (близкие родственники), обладающие высокой чувствительностью к внешним электрическим полям, могут различать на некотором расстоянии движущихся рыб по их биопотенциалам.

С целью проверки этой гипотезы были проведены специальные опыты с морской лисицей и камбалой. Ската помещали в один аквариум, а камбалу - в другой. Аквариумы были химически, акустически и оптически изолированы друг от друга. Между ними осуществлялась только электрическая связь. В аквариуме с камбалой находились воспринимающие электроды, соединенные через усилитель с воспроизводящими электродами, размещенными в аквариуме с морской лисицей. В процессе опытов снималась электрокардиограмма морской лисицы.

Было обнаружено, что, если камбала находилась на расстоянии 10-15 см от приемных электродов, величина ее биопотенциалов оказывалась достаточной для возбуждения ската.

Способность скатов воспринимать биопотенциалы других рыб подтвердили также опыты, в которых с помощью магнитофона воспроизводилась предварительная запись биопотенциалов камбалы. Эти опыты проводились в крупных бассейнах с морской водой диаметром 1,8 м по условнорефлекторной методике. Посредством двух электродов, помещенных в грунт на дне бассейна, в воде генерировалось модельное биопотенциальное поле камбалы. Скат свободно передвигался в бассейне, и каждый раз, когда он проплывал над электродами, ему бросали кусок мяса. Приблизительно после 50 таких «тренировок» у животных обычно вырабатывался условный рефлекс. Скаты плавали над электродами, и при включении модельного поля камбалы устремлялись к участку грунта, где помещались электроды.

Таким образом, акулы и скаты могут использовать биопотенциальные разряды рыб, которые составляют их пищу, для отыскания корма. По-видимому, такой же способностью обладают и некоторые другие рыбы, имеющие электрорецепторы: американский сомик, отдельные представители осетровых и хищные слабоэлектрические рыбы.

Групповые сигналы впервые были обнаружены у электрического угря Коэтсом. Было замечено, что некоторые разряды одного угря привлекают к нему других рыб. Это явление подтвердилось наблюдениями в природных условиях. С целью выяснения информационной роли разрядов угря проводились опыты как с искусственными, так и с естественными разрядами.

Опыты по выяснению действия на угрей искусственных разрядов, сходных с разрядами угря, проводились в бассейне размерами 4,1 X 1,2 X 0,3 м. Регистрирующие электроды устанавливались с одной стороны бассейна по его длине, а стимулирующие - посредине бассейна. Расстояние между электродами составляло 60 см. Разряды изменялись по частоте следования, напряжению и длительности импульсов. Реакции оценивали по приближению угря к стимулирующим электродам, ответным разрядам, а также по ориентировочным реакциям: кусанию и толканию электродов.

Было установлено, что при излучении разрядов угорь возбуждается, посылает ответные разряды и подходит к стимулирующим электродам. Наиболее активно угорь реагировал на разряды, состоящие из импульсов длительностью 5 мс и частотой следования 100 импульсов в секунду при напряженности поля от 1,5 до 0,25 В на 1 см. На разряды большей и меньшей напряженности реакция снижалась. Частота следования импульсов тоже оказывала влияние на реакцию угрей: она ослабевала при частоте следования импульсов меньше 10 и больше 200 импульсов в секунду. Разряды «угреподобного» типа привлекали угрей, и рыбы сопровождали перемещаемые по водоему стимулирующие электроды.

Опыты с естественными разрядами угря проводились по методу, условно названному «актеры-зрители», в двух вариантах. В первом варианте и «актера» (угря, генерирующего разряды), и «зрителей» (угрей, воспринимающих разряды) помещали в одном бассейне. «Актер» находился в сетчатом садке, и его электрическую деятельность периодически стимулировали прикосновением стеклянной палочки к телу. Разряды угря контролировали с помощью воспринимающих электродов и регистрирующей аппаратуры. При каждом разряде «актера» остальные угри возбуждались (на расстоянии не далее 7 м) и подплывали к нему.

Однако так как в этом варианте опытов все угри находились в одном бассейне, они могли пользоваться не только электрическими каналами связи. Чтобы исключить вероятность связи иными способами, во втором варианте опытов «актера» и «зрителей» помещали отдельно, в двух аквариумах, между которыми сохранялась только электрическая связь. Разряды «актера» по проводам передавались на электроды, находившиеся в аквариуме с угрями-«зрителями». Опыты показали, что и в этом случае отмечается эффект привлечения угрей, особенно голодных, к электродам. Подходящие к электродам угри как бы исследовали излучаемые разряды и сами начинали их генерировать. Эффект привлечения наблюдался на расстоянии от электродов не более 7 м.

Таким образом, можно сделать вывод, что разряды с высокой частотой следования импульсов (в среднем 100 импульсов в секунду) являются сигналами привлечения угрей друг к другу. Основываясь на экспериментальных данных (угри привлекаются только на охотничьи сигналы, и при входе в зону действия электрического поля они тоже начинают активно их генерировать), можно предполагать, что разряды, привлекающие угрей, имеют значение сигналов о местонахождении пищи.

Групповые сигналы есть не только у гимнотовидных, к которым относится угорь, но и у рыб других отрядов, например у мормирообразных. Для определения сигнального значения импульсов у этих рыб Лиссман поставил следующие опыты. Ученый использовал аквариум, разделенный на два отсека перегородкой из двух слоев марли, исключавшей оптический контакт между рыбами. В один из них помещали одну рыбу, а спустя некоторое время во второй - другую. Наблюдения показали, что в дневное время обе рыбы лежали на дне аквариума неподвижно, но их импульсация была в определенных пределах синхронна. Если к одной рыбе прикасались стеклянной палочкой и ее импульсация увеличивалась, то же происходило с другой рыбой.

В ночное время при слабом освещении можно было видеть, что обе рыбы всплывают и начинают плавать вдоль перегородок, явно ощущая присутствие друг друга. Разряды рыб при этом значительно усиливались. Эти наблюдения с несомненностью свидетельствуют о том, что свои импульсы рыбы используют и как сигналы группового общения.

Агрессивно-оборонительные сигналы характерны для рыб, у которых четко выражена внутривидовая иерархия а также у территориальных одиночных или парных рыб, в частности у гимнарха. Гимнарх - территориальная рыба: перед размножением он строит гнездо из плавающих растений, куда откладывает крупную (до 1 см в диаметре) икру. Гнездо находится в середине его территории. Самец охраняет гнездо во время инкубационного периода (3-4 дня), в течение которого он очень агрессивен к особям своего вида. Благодаря высокой чувствительности к электрическим сигналам он обнаруживает своих «конкурентов» на значительных расстояниях. Для доказательства этого были проведены специальные опыты.

В бассейн, где находился гимнарх, помещали несколько пар электродов, на которые подавали записанные на магнитофоне электрические импульсы гимнархов (напряжение на электродах достигало 3 В). Таким образом, в воде моделировалось электрическое поле гимнарха. Опыты показали, что гимнарх атакует излучающие электроды. Кроме того, было установлено, что при изменении частоты импульсов в широком диапазоне (т. е. они значительно отличаются от характерных импульсов для гимнарха) агрессивная реакция на электроды у рыбы сохраняется. По-видимому, гимнарх использует электрические сигналы не только во внутривидовых, но и в межвидовых отношениях.

Столь же четко выражены сигналы, используемые в агрессивных отношениях, и у мормирообразных. Это также связано с их территориальностью. Если поместить двух рыб в один аквариум, частота их разрядов сразу же увеличивается, затем они нападают друг на друга, пытаясь откусить хвостовой стебель. Именно в этой части тела и расположены их электрические органы.

Исследователи, наблюдавшие аналогичное поведение мормирообразных в природных условиях, пришли к выводу, что они применяют электрические разряды для охраны своей территории. Установлено, что рыбы-соперники по характеру разрядов определяют силу противника. При сильном разряде одной рыбы электрическая деятельность другой обычно подавляется.

Наибольшую роль агрессивно-оборонительные сигналы играют в связи с внутривидовой иерархией. В этом отношении характерно поведение гимнотуса, обитающего в реках Южной Америки.

Эта ночная территориальная рыба, достигающая 60 см в длину, имеет четко выраженную иерархическую организацию. Территория каждой особи, на которой она питается, занимает площадь около 0,4 м 2 , эти участки находятся на расстоянии не менее 3 м друг от друга. Несмотря на это, гимнотусы при сближении до 2 м обмениваются электрическими сигналами.

Выделено четыре типа агрессивно-оборонительных сигналов, сопровождаемых соответствующими позами. Разряд постоянной относительно высокой частоты следования импульсов (100-500 в 1 с) расшифровывается воспринявшей его особью как сигнал о наличии соперника и вызывает атаку при его приближении на расстояние не более 20 см. Подобные разряды рыбы этого вида используют также для локации.

Разряд, генерируемый вблизи соперника, воспринимается как сигнал «поддержания атаки». При этом рыбы располагаются боком друг к другу так, что хвост одной находится у головы другой и создаваемые ими поля направлены в область тела с наибольшей концентрацией электрорецепторов. Таким образом достигается наибольшее обоюдное стимулирующее воздействие.

Разряд, прекращающийся на короткий период (менее чем на 1,5 с), а затем возобновляющийся с новой силой,- сигнал, предшествующий броску на соперника. Разряд, прерывающийся на 1,5 с и более,- сигнал, приостанавливающий сражение. Его обычно генерирует более слабая рыба, которая как бы просит пощады. Описанные сигналы были изучены в лабораторных и природных условиях.

Таким образом, электрические рыбы широко используют агрессивно-оборонительные электрические сигналы. Следует отметить, что и неэлектрические рыбы - цихлидовые, макроподы, щуки, окуни, угри и т. д.- сопровождают агрессивно-оборонительные отношения характерной разрядной деятельностью.

Межполовые опознавательные сигналы. Некоторые факты говорят об использовании рыбами электрической сигнализации для различения особей противоположного пола. Так, черноморский звездочет в период размножения генерирует характерные разряды. Их напряжение и длительность увеличиваются у самок по мере созревания гонад, достигая максимума в последних стадиях зрелости; у самцов напряжение разрядов в это время становится минимальным, а длительность - максимальной.

Еще более четко различаются межполовые опознавательные сигналы у шиповатого ската: у самок их напряжение максимально весной и летом (в период нереста), а у самцов - летом и осенью. При этом характер разрядов и самок, и самцов меняется по мере полового созревания рыб.

Биоэлектрические поля стаи рыб. Стайное поведение рыб изучали многие исследователи. Одни вскрывали механизм этого явления, другие пытались понять биологическое назначение стаи в жизни рыб. Однако многие вопросы стайного поведения еще не ясны. Например, какой механизм обусловливает целостность стаи при очень быстрых поворотах? В естественных условиях стаи бывают настолько велики, что объяснить их одновременные повороты зрительной передачей информации невозможно Это нельзя объяснить и звуковой сигнализацией, так как сигналов такого типа у стайных рыб нет.

Сотрудники лаборатории ориентации рыб Института эволюционной морфологии и экологии животных им А. Н. Северцова Академии наук СССР предположили, что биоэлектрические поля используются в стайном поведении. Однако напряженность полей, создаваемых разрядами неэлектрических рыб, незначительна (для большинства видов она составляет около 10 мкВ на 1 см на расстоянии 5-10 см от рыбы) Такие поля неэлектрические рыбы не воспринимают. Если это так, то имеют ли их биоэлектрические поля биологическое значение, или они представляют собой только побочный результат деятельности мышц и нервов?

Интересные данные получены в опытах по выяснению зависимости амплитуды и длительности биоэлектрических разрядов, образующих поля, от количества рыб. Вначале опыты проводились со стайкой тетрагоноптерусов (длина рыбы 5-7 см) в аквариуме размером 11 x 35 x 40 см. Разряды регистрировались с помощью двух пар электродов и шлейфового осциллографа. В аквариум последовательно подсаживали 40 рыб. Чтобы рыбы совершали маневры в стае (одновременные повороты), их пугали резко движущейся тенью. Запись разрядов производилась в диапазоне частот 50-1000 Гц.

Полученные данные показали, что с увеличением количества рыб в стае амплитуда разрядов возрастала, но незначительно, а длительность значительно: если у одной-двух особей сигнал длился 6-12 мс, то в стае из 40 рыб 150-280 мс. В опытах на молоди угря по мере увеличения количества рыб от 1 до 80 амплитуда электрических разрядов возрастала в 14 раз.

В дальнейшем опыты по суммированию биоэлектрических полей в стае проводили в естественных условиях на гольянах и дальневосточных гольцах. Было подтверждено, что с увеличением количества рыб в стае амплитуда и длительность разрядов возрастают. Именно поэтому разряды стаи рыб удается записать на значительно большем расстоянии, чем разряды одной особи: если разряды одного гольяна можно зарегистрировать на расстоянии до 30-40 см, а гольца - до 1 м, то разряды стаи гольянов из 100 особей фиксируют на расстоянии до 2,5 м, а стаи гольцов - до 3,5 м Естественно, что величина амплитуды суммированных электрических полей зависит не только от количества рыб в стае, но и от активности и синхронности генерирования ими разрядов.

В 1967 г. биоэлектрическое поле стаи атеринок было зарегистрировано на расстоянии 12-15 м. Стая состояла примерно из 500-600 особей, в поперечнике равнялась 2,5 м и двигалась относительно монолитно.

Суммированное биоэлектрическое поле стаи имеет напряженность, соответствующую чувствительности рыб. Повышению чувствительности рыб к полю стаи способствует также длительное непрерывное воздействие на них импульсов суммированного разряда.

Эти данные послужили основанием для гипотезы об использовании рыбами биоэлектрического поля стаи в целях ориентации. Предполагается, что стая с помощью своего биоэлектрического поля осуществляет электролокацию, а также и ориентируется в пространстве благодаря изменению параметров поля при его взаимодействии с магнитным полем Земли. Существование биоэлектрического поля стаи позволяет объяснить ее мгновенные повороты и целостность. Величина напряженности поля стаи, по-видимому, несет рыбам информацию о количестве составляющих ее особей.

В связи с образованием вокруг стай рыб биоэлектрического поля ученых заинтересовала возможность электропеленгации рыб и использования ее в практических целях. Электрические разряды рыб регистрируют двумя способами: по напряжению и току. Электрического угря и ската можно по потенциалам разрядов обнаружить на расстоянии 10 м, африканского слоника - 2 м, а неэлектрических рыб - вьюна и ставриду - 20-30 см; по силе тока рыб можно обнаружить на расстоянии, большем примерно в 5-10 раз. На современном уровне развития техники электропеленгация одиночных промысловых рыб невозможна, за исключением крупных рыб, например осетров, лососей, сомов, создающих биоэлектрические поля большой напряженности. Однако вполне реальна электропеленгация больших стай рыб с высокой напряженностью их электрических полей.

Электрическая навигация

Мысль о возможности ориентации животных по магнитному полю Земли высказал еще в 1855 г. Миддендорф. Имеются данные о чувствительности к магнитному полю Земли насекомых, улиток, водорослей. Говоря о возможности использования рыбами магнитного поля Земли для целей навигации, естественно поставить вопрос, а могут ли они вообще воспринимать это поле.

На магнитное поле Земли в принципе могут реагировать как специализированные, так и неспециализированные системы. В настоящее время не доказано, что у рыб имеются чувствительные к этому полю специализированные рецепторы.

Как воспринимают магнитное поле Земли неспециализированные системы? Более 40 лет назад было высказано предположение, что основой таких механизмов могут быть токи индукции, возникающие в теле рыб при их движении в магнитном поле Земли. Одни исследователи считали, что рыбы во время миграций используют электрические индукционные токи, возникающие в результате движения (течения) воды в магнитном поле Земли. Другие полагали, что некоторые глубоководные рыбы используют индукционные токи, возникающие в их теле при движении.

Рассчитано, что при скорости движения рыбы 1 см в секунду на 1 см длины тела устанавливается разность потенциалов около 0,2-0,5 мкВ. Многие электрические рыбы, обладающие специальными электрорецепторами, воспринимают напряженность электрических полей еще меньшей величины (0,1-0,01 мкВ на 1 см). Таким образом, в принципе они могут ориентироваться на магнитное поле Земли при активном перемещении или пассивном сносе (дрейфе) в потоках воды.

Анализируя график пороговой чувствительности гимнарха, советский ученый А. Р. Сакаян сделал вывод, что эта рыба чувствует количество протекающего в ее теле электричества, и высказал предположение о способности слабоэлектрических рыб определять направление своего пути по магнитному полю Земли.

Сакаян рассматривает рыбу как замкнутый электрический контур. При движении рыбы в магнитном поле Земли по ее телу в результате индукции в вертикальном направлении проходит электрический ток. Количество электричества в теле рыбы при ее перемещении зависит только от взаимного расположения в пространстве направления пути и линии горизонтальной составляющей магнитного поля Земли. Следовательно, если рыба реагирует на количество электричества, протекающего через ее тело, она может определить свой путь и его направление в магнитном поле Земли.

Таким образом, хотя вопрос об электронавигационном механизме слабоэлектрических рыб еще окончательно не выяснен, принципиальная возможность использования ими токов индукции не вызывает сомнений.

Электрические рыбы в значительном большинстве - «оседлые», немигрантные формы. У мигрантных неэлектрических видов рыб (тресковые, сельдевые и др.) электрических рецепторов и высокой чувствительности к электрическим полям не обнаружено: обычно она не превышает 10 мВ на 1 см, что в 20 000 раз ниже напряженности электрических полей, обусловленных индукцией. Исключением являются неэлектрические рыбы (акулы, скаты и др.), имеющие особые электрорецепторы. При движении со скоростью 1 м/с они могут воспринимать индуцированное электрическое поле напряженностью 0,2 мкВ на 1 см. Электрические рыбы чувствительнее неэлектрических к электрическим полям примерно в 10 000 раз. Это говорит о том, что неэлектрические виды рыб не могут ориентироваться на магнитное поле Земли, используя токи индукции. Остановимся на возможности использования рыбами биоэлектрических полей при миграциях.

Практически все типично мигрирующие рыбы - стайные виды (сельдевые, тресковые и др.). Исключение составляет только угорь, но, переходя в мигрантное состояние, он претерпевает сложный метаморфоз, что, возможно, сказывается на генерируемых электрических полях.

В период миграции рыбы образуют плотные организованные стаи, движущиеся в определенном направлении. Небольшие косячки этих же рыб не могут определить направление миграции.

Почему же рыбы мигрируют в стаях? Некоторые исследователи объясняют это тем, что по законам гидродинамики движение рыб в стаях определенной конфигурации облегчается. Однако существует и другая сторона этого явления. Как уже говорилось, в возбужденных стайках рыб биоэлектрические поля отдельных особей суммируются. В зависимости от количества рыб, степени их возбуждения и синхронности излучения общее электрическое поле может значительно превышать объемные размеры самой стаи. В подобных случаях напряжение, приходящееся на одну рыбу, может достигать такой величины, что она способна воспринимать электрическое поле стаи даже при отсутствии электрорецепторов. Следовательно, рыбы могут использовать электрическое поле стаи в целях навигации благодаря его взаимодействию с магнитным полем Земли.

А как ориентируются в океане нестайные рыбы-мигранты - угри и тихоокеанские лососи, совершающие длительные миграции? Европейский угорь, например, становясь половозрелым, направляется из рек в Балтийское море, затем в Северное море, попадает в Гольфстрим, движется в нем против течения, пересекает Атлантический океан и приходит в Саргассово море, где он размножается на большой глубине. Следовательно, угорь не может ориентироваться ни по Солнцу, ни по звездам (по ним ориентируются во время миграций птицы). Естественно возникает предположение, что, так как большую часть своего пути угорь проходит, находясь в Гольфстриме, он использует для ориентации течение.

Попробуем представить, как ориентируется угорь, находясь внутри многокилометровой толщи движущейся воды (химическая ориентация в этом случае исключается). В толще воды, все струйки которой перемещаются параллельно (подобные потоки называются ламинарными), угорь движется в одном направлении с водой. В этих условиях его боковая линия - орган, позволяющий воспринимать локальные потоки воды и поля давления,- работать не может. Точно так же, плывя по реке, человек не ощущает ее течения, если не смотрит на берег.

Может быть, морское течение не играет никакой роли в механизме ориентации угря и его миграционные пути случайно совпадают с Гольфстримом? Если так, то какие же сигналы окружающей среды использует угорь, чем он руководствуется при ориентации?

Остается предположить, что угорь и тихоокеанский лосось используют в своем ориентационном механизме магнитное поле Земли. Однако специализированных систем для его восприятия у рыб не обнаружено. Но о ходе опытов по выяснению чувствительности рыб к магнитным полям оказалось, что и угри, и тихоокеанские лососи обладают исключительно высокой чувствительностью к электрическим токам в воде, направленным перпендикулярно оси их тела. Так, чувствительность тихоокеанских лососей к плотности тока составляет 0,15*10 -2 мкА на 1 см 2 , а угря - 0,167*10 -2 на 1 см 2 .

Была высказана мысль об использовании угрем и тихоокеанскими лососями геоэлектрических токов, создаваемых в воде океана течениями. Вода - проводник, движущийся в магнитном поле Земли. Возникающая в результате индукции электродвижущая сила прямо пропорциональна напряженности магнитного поля Земли в данной точке океана и определенной скорости течения.

Группа американских ученых на трассе движения угря провела инструментальные замеры и расчеты величин возникающих геоэлектрических токов. Выяснилось, что плотности геоэлектрических токов составляют 0,0175 мкА на 1 см 2 , т. е. почти в 10 раз выше чувствительности к ним рыб-мигрантов. Последующие опыты подтвердили, что угри и тихоокеанские лососи избирательно относятся к токам с подобной плотностью. Стало очевидно, что угорь и тихоокеанские лососи могут использовать для своей ориентации при миграциях в океане магнитное поло Земли и морские течения благодаря восприятию геоэлектрических токов.

Советский ученый А. Т. Миронов предположил, что при ориентации рыбы используют теллурические токи, впервые обнаруженные им в 1934 г. Механизм возникновения этих токов Миронов объясняет геофизическими процессами. Академик В. В. Шулейкин связывает их с электромагнитными полями в космосе.

В настоящее время работами сотрудников Института земного магнетизма и распространения радиоволн в ионосфере АН СССР установлено, что постоянная составляющая полей, образуемых теллурическими токами, не превышает напряженности 1 мкВ на 1 м.

Советский ученый И. И. Рокитянский предположил, что, поскольку теллурические поля являются индукционными полями с разными амплитудами, периодами и направлениями векторов, рыбы стремятся уходить в места, где величина теллурических токов меньше. Если это предположение правильно, то в период магнитных бурь, когда напряженность теллурических полей достигает десятков - сотен микровольт на метр, рыбы должны уходить от берегов и с мелких мест, а следовательно, и с промысловых банок в глубоководные районы, где величина теллурических полей меньше. Изучение взаимосвязи поведения рыб с магнитной активностью позволит подойти к разработке способов прогнозирования их промысловых скоплений в определенных районах. Сотрудники Института земного магнетизма и распространения радиоволн в ионосфере и Института эволюционной морфологии и экологии животных АН СССР провели работу, в которой при сопоставлении уловов норвежской сельди с магнитными бурями была выявлена определенная корреляция. Однако все это требует экспериментальной проверки.

Как уже говорилось выше, у рыб существуют шесть систем сигнализации. А не пользуются ли они еще каким-нибудь чувством, пока не известным?

В США в газете «Новости электроники» за 1965 и 1966 гг. было опубликовано сообщение об открытии У. Минто особых «гидронических» сигналов новой природы, используемых рыбами для связи и локации; причем у некоторых рыб они регистрировались на большом расстоянии (у макрели до 914 м). Подчеркивалось, что «гидроническое» излучение нельзя объяснить электрическими полями, радиоволнами, звуковыми сигналами или другими ранее известными явлениями: гидронические волны распространяются только в воде, их частота колеблется от долей герца до десятков мегагерц.

Сообщалось, что сигналы были открыты при исследовании звуков, издаваемых рыбами. Среди них выделены частотно-модулированные, используемые для локации, и амплитудно-модулированные, излучаемые большинством рыб и предназначенные для связи. Первые напоминают короткий свист, или «чириканье», а вторые - «щебетанье».

У. Минто и Дж. Хадсон сообщили, что гидроническое излучение свойственно практически всем видам, но особенно сильно эта способность развита у хищников, рыб со слаборазвитыми глазами и у охотящихся ночью. Ориентационные сигналы (сигналы локации) рыбы испускают в новой обстановке или при исследовании незнакомых объектов. Сигналы связи наблюдаются в группе особей после возвращения рыбы, побывавшей в незнакомой обстановке.

Что же побудило Минто и Хадсона считать «гидронические» сигналы проявлением не известного ранее физического явления? По их мнению, эти сигналы не акустические, потому что их можно воспринимать непосредственно на электроды. В то же время «гидронические» сигналы нельзя отнести и к электромагнитным колебаниям, по мнению Минто и Хадсона, так как в отличие от обычных электрических они состоят из импульсов, не имеющих постоянного характера и длящихся несколько миллисекунд.

Однако с такими взглядами трудно согласиться. У электрических и неэлектрических рыб сигналы очень разнообразны по форме, амплитуде, частоте и длительности, в связи с чем такие же свойства «гидронических» сигналов не говорят об их особой природе.

Последняя «необычная» особенность «гидронических» сигналов - их распространение на расстояние 1000 м - также может быть объяснена на основании известных положений физики. Минто и Хадсон не проводили лабораторных экспериментов на одной особи (данные таких опытов свидетельствуют, что сигналы отдельных неэлектрических рыб распространяются на небольшие расстояния). Они регистрировали сигналы от косяков и стай рыб в морских условиях. Но, как уже говорилось, в подобных условиях может суммироваться напряженность биоэлектрических полей рыб, и единое электрическое пола стаи удается уловить на значительном расстоянии.

На основании изложенного выше можно сделать вывод, что в работах Минто и Хадсона необходимо различать две стороны: фактическую, из которой следует, что неэлектрические виды рыб способны генерировать электрические сигналы, и «теоретическую» - бездоказательное утверждение, что эти разряды имеют особую, так называемую гидроническую природу.

В 1968 г. советский ученый Г. А. Остроумов, не вдаваясь в биологические механизмы генерации и приема электромагнитных сигналов морскими животными, а исходя из фундаментальных положений физики, произвел теоретические расчеты, которые привели его к заключению, что Минто и его последователи ошибаются, приписывая особую физическую природу «гидроническим» сигналам. В сущности, это обычные электромагнитные процессы.

Из книги Удивительная биология автора Дроздова И В

О биолокации, электрических рыбах и многом другом В природе очень широко распространено свечение, о нем уже говорилось в начале книги, и наверное, каждый с ним сталкивался. Светятся в темноте гнилушки, иногда по ночам чудесно светится море. Об этом знали еще в древности, не

Из книги Новая наука о жизни автора Шелдрейк Руперт

«Живые» приборы и их использование человеком В наш век все проблемы решаются с использованием строгого научного подхода. Однако при этом нередко остаются в стороне или попросту забываются крайне ценные приобретения многовекового опыта наших далеких предков, например в

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

6.2. Полярность морфогенетических полей Большинство биологических морфических единиц поляризовано по крайней мере в одном направлении. Их морфогенетические поля, содержащие поляризованные виртуальные формы, будут автоматически принимать подходящие ориентации, если

Из книги Муравей, семья, колония автора Захаров Анатолий Александрович

6.3. Размеры морфогенетических полей Размеры индивидуальных атомных или молекулярных морфических единиц более или менее постоянны; это относится также к размерам кристаллических решеток, хотя они повторяются неограниченное число раз, образуя кристаллы различных

Из книги С вечера до утра автора Акимушкин Игорь Иванович

1. О природе М-полей Итак, согласно рассматриваемой гипотезе, фактор, определяющий образование форм на всех уровнях организации материи, - это морфогенетические поля. Утверждается, что это поля нового типа, не известного физике; соответственно, они не могут быть измерены

Из книги Кризис аграрной цивилизации и генетически модифицированные организмы автора Глазко Валерий Иванович

Из книги Земля в цвету автора Сафонов Вадим Андреевич

ИСПОЛЬЗОВАНИЕ ПОЛЕЗНЫХ МУРАВЬЁВ Муравьи начинают оказывать серьезное влияние на биоценоз при условии, что численность их достаточно велика. Однако в лесах гнезда рыжих лесных муравьев размещаются крайне неравномерно. Это происходит в силу различных причин. Прежде

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Мир ночи наших лесов и полей

Из книги Клематисы автора Бескаравайная Маргарита Алексеевна

Использование ДНК-технологий для разработки вакцин Перспективным направлением является создание трансгенных растений, несущих гены белков, характерных для бактерий и вирусов, вызывающих инфекционные заболевания. При потреблении сырых плодов и овощей, несущих такие

Из книги Мозг в электромагнитных полях автора Холодов Юрий Андреевич

КОМАНДАРМ ПОЛЕЙ

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Какие напряжения способны вырабатывать «живые батареи» электрических рыб? Разность потенциалов, развиваемая на концах электрических органов, может достигать 1200 вольт (электрический угорь), а мощность разряда в импульсе – от 1 до 6 киловатт (электрический скат). Разряды

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Использование клематисов в озеленении Клематисы заслуженно называют «королями» вьющихся растений, и в декоративном садоводстве им отводится особое место. Привлекательность и красота клематисов обусловлены разнообразием окраски и обилием цветков (нередко от 500 и

Из книги автора

Глава 5. Экологическое значение геофизических электромагнитных полей Медицинская сторона экологического значения естественных ЭМП прежде всего находит выражение в корреляции между изменениями ЭМП и обострением различных заболеваний, хотя здоровые люди тоже

Из книги автора

Глава 7. Непосредственное действие электромагнитных полей на мозг Мозг как наиболее совершенная система управления и как орган тонкого приспособления организма к условиям окружающей среды привлекает пристальное внимание естествоиспытателей различных специальностей.

Из книги автора

10.2. Использование земельных ресурсов Почвенный покров Приморского края и масштабы его деградацииПриморский край входит в южно-таежную лесную Амуро-Уссурийскую и лесостепную Амуро-Ханкайскую области и горную Южно-Сихотэ-Алиньскую провинцию. Горы занимают около 72 %

В квартире, и на улице, на работе и на отдыхе за городом нас окружают невидимые и практически неощутимые электромагнитные поля (ЭМП). Развитие жизни на планете Земля во многом обусловлено этим важнейшим экологическим фактором.

Среди основных сенсорных систем (органов чувств) рыб, к которым относят слуховую, зрительную, вкусовую, обонятельную, осязательную, сейсмосенсорную системы, общее химическое чувство, имеется еще одна система чувств, имеющая немаловажное значение в жизни рыб — электрорецепторная система чувств.

Начиная с 1960-х годов, в мире проводятся интенсивные исследования значения самых разнообразных электрических полей в жизни рыб. Особый интерес к этим работам вызван и тем, что в последние десятилетия резко возросло воздействие на рыб различных электромагнитных полей искусственного происхождения. Сильные поля в водной среде сегодня наводятся при работе электрорыбозаградителей, электролове рыбы, в ходе морской геофизической разведки (при использовании методов электрозондирования), "благодаря" работе мощных радиостанций, радиолокаторов, преобразователей электрической энергии, высоковольтных линий электропередач (ЛЭП).

Первые работы в области электрорецепции, электроориентации и чувствительности рыб к электромагнитным полям были начаты в России под руководством В. Р. Протасова. В его труде "Биоэлектрические поля в жизни рыб" (1972) приводились данные о так называемых слабо- и сильноэлектрических рыбах, о механизмах восприятия ими магнитных и электрических полей и их значении в жизни подводных обитателей. Эти исследования положили начало новому направлению биологической науки — электроэкологии.

Всех морских и пресноводных рыб по их способности воспринимать или генерировать самостоятельно электрические поля разделяют на 3 группы: сильноэлектрические; слабоэлектрические и неэлектрические, "обычные" виды.

Сильноэлектрические виды (пресноводный электрический угорь, электрические скат и сом, американский звездочет), у которых в процессе эволюции появились специальные электрические органы, вырабатывающие вокруг тела рыбы сильное электрическое поле с целью нападения или обороны. Для сильноэлектрических рыб способность генерировать в особых органах ток необходима для привлечения жертв, так как электрическое поле вокруг рыбы приводит к электролизу воды, происходит обогащение воды кислородом, что приманивает к угрю рыб, лягушек и других водных животных. Кроме того, сильное электрическое поле способно ввести жертву в состояние электронаркоза. Доказано, что электрическая деятельность облегчает угрю… дыхание в заморных водоемах и болотах: происходит разложение воды в теле рыбы и обогащение крови кислородом, причем водород выводится рыбой наружу. В незаморных водоемах угорь использует собственное электрическое поле как своеобразный "электролокатор" для поиска жертв.

У слабоэлектрических рыб образовывать импульсные электрические поля способны так называемые электрогенерирующие ткани. Эти рыбы применяют свои способности для локации и связи. Слабоэлектрические пресноводные рыбы испускают слабые и кратковременные разряды с постоянной частотой импульсов. Умеют использовать электрические поля и некоторые сельдевые и осетровые рыбы. Обладают способностью испускать электрические разряды такие общеизвестные рыболовам виды как красноперка, карась, окунь, пескарь, вьюн, щука. Первые два вида испускают кратковременные разряды, окунь, пескарь и вьюн — средние по продолжительности, щука — наиболее длительные разряды.

Слабоэлектрические рыбы излучают слабые электрические сигналы. В 1958 году Р. Лиссман установил, что они используют электрополе для ориентации и общения в водной среде.

К неэлектрическим, "обычным" рыбам относится подавляющее большинство видов. Они не могут самостоятельно генерировать электротоки и обладают крайне слабой чувствительностью к электрическим и электромагнитным полям. У этих рыб нет особых морфологических структур для восприятия электрического тока и электромагнитных полей, поэтому их чувствительность ограничивается восприятием полей с напряженностью не более нескольких милливольт на сантиметр.

Таким образом, следует различать 1) нечувствительных (слабочувствительных) к электрическим полям и 2) высокочувствительных (электрочувствительных) рыб, обладающих специализированными электрорецепторами, способными в природной среде воспринимать слабые электрические токи напряженностью от сотых долей до единиц микровольта на сантиметр. Способность чувствовать изменения напряженности электромагнитных полей в водной среде помогают этим рыбам находить добычу, ориентироваться в пространстве, общаться в стаде, уходить из опасной зоны при природных катастрофах.

К высокочувствительным представителям ихтиофауны наших водоемов относят осетровых и сомовых рыб. Интересно, что при исследовании степени восприимчивости разных пресноводных рыб к воздействию электрического тока оказалось, что наибольшей чувствительностью обладала щука, наименьшей — линь и налим, что объясняется наличием у последних толстого слоя слизи, снижающего способность восприятия слабых электрических полей рецепторами кожи.

Учеными-электроэкологами установлено, что не менее 300 из современных 20,9 тысяч видов рыб способны использовать в своей жизни электрические поля. И не только использовать, но и генерировать его "собственноручно"! Например, в конце 1980-х — начале 1990-х гг. группой ученых Института эволюционной морфологии и экологии животных РАН было доказано, что черноморские скаты рода Raja (морские лисицы) могут передавать и принимать собственные электрические сигналы на расстоянии до 7-10 метров, что значительно превышает возможность общения этих хрящевых рыб при помощи других дистантных органов чувств (Барон и др., 1985, 1994).

Восприятие рыбами электрических (электромагнитных) полей. Слабые электрические токи и магнитные поля воспринимаются главным образом рецепторами кожи рыб. Многочисленные исследования показали, что почти у всех слабо- и сильноэлектрических рыб электрорецепторами служат производные органов боковой линии. У акул и скатов электрорецептивную функцию выполняют так называемые ампулы Лоренцини — особые слизистые железы в коже.

Более сильные электромагнитные поля воздействуют непосредственно на нервные центры водных организмов.

Слабоэлектрические рыбы обладают высокой чувствительностью к электрическим полям, что позволяет им находить и различать в воде объекты, определять соленость воды, использовать разряды других рыб с информационной целью в межвидовых и внутривидовых отношениях. Например, обыкновенный сом Silurus glanis имеет высокочувствительную электрорецептивную систему, воспринимающую плотность тока 10-10 А/мм, т. е. речной гигант способен почувствовать в 2-4 метрах от себя разряженную "пальчиковую" батарейку!

Электрические поля постоянного тока воспринимаются рыбами в виде двигательной реакции: они вздрагивают при включении — выключении тока. Если напряженность поля увеличивается, у пресноводных рыб наблюдается оборонительная реакция: рыбы приходят в сильное возбуждение и стараются уплыть из зоны действия поля. У исследованных карася, щуки, окуня, гольяна, осетра резко учащается ритм дыхания. Примечательно, что для одного и того же вида рыб более крупные особи раньше и сильнее реагируют на ток, чем более мелкие.

Если напряженность поля продолжает расти, происходит анодная реакция (движение рыбы по направлению к аноду), после чего рыба теряет равновесие, подвижность, перестает реагировать на внешние раздражители — наблюдается электронаркоз. Еще большее повышение напряженности поля приводит появлению в крови рыб значительного количества ацетилхолина, блокирующего нормальное течение дыхания и деятельность нервной системы, что приводит, в итоге, к гибели рыбы (Протасов, 1972).

Переменный ток вызывает у рыб более сильное возбуждение, чем постоянный. После его воздействия рыба долго не может прийти "в себя" — она находится в состоянии электрогипноза.

В импульсных электрических полях поведение рыб еще более сложно и разнообразно, причем реакции их зависят от частоты, формы и продолжительности импульсов.

Водные организмы и высоковольтные ЛЭП. Развитие энергетики привело к повсеместному распространению высоковольтных линий переменного тока напряжением 500 кВ (так называемые ЛЭП-500). Они тянутся на многие километры, через поля, перелески, луга и водоемы. В зоне линии электропередачи всегда присутствует повышенный электромагнитный фон, обуславливающий сильное воздействие на естественную флору и фауну. Напряженность электрического поля на поверхности земли или воды под ЛЭП-500 (несмотря на 10-15-метровое расстояние до проводов) может достигать 100-150 В/см (Бондарь, Частоколенко, 1988 и др.)

В настоящее время вопрос действия ЛЭП на водные системы очень слабо изучен, причем исследования по данной проблеме начали проводиться только в начале 1980-х гг. Известно, что высоковольтные линии, пересекая природные и искусственные водоемы, наводят в водной среде электрические поля разной величины.

По мнению В. Р. Протасова (1982), напряженность электрических полей переменного тока, образуемых воздушными переходами ЛЭП, достигает 50 мВ/см, подводными переходами (кабельные линии) — более 50 мВ/см, причем плотность тока в воде достигает 10 мкА/мм2. Такие градиенты потенциала могут создавать в водной среде неблагоприятный абиотический фон, так как приближаются к порогу реакции возбуждения большинства неэлектрических рыб. Кстати, при такой плотности тока в водоеме начинается гибель некоторых гидробионтов, например, пресноводной гидры.

Электромагнитные поля (ЭМП), создаваемые ЛЭП, сопоставимы с порогами чувствительности рыб, которые обладают электрорецепторами. ЭМП в состоянии вытеснить многих рыб и беспозвоночных из зоны наведенных электротоков. Большую опасность высоковольтные ЛЭП могут нести в районе пересечения нерестилищ ценных видов рыб, на нерестовом ходу осетровых. Например, веслонос проявляет реакцию избегания при напряженности электрического поля в 15 мкВ/см (Kalmijn, 1974), т. е. еще до попадания в зону наведенных электрических полей.

Однако это не значит, что все рыбы избегают акваторий, над которыми проходят линии электропередачи. Автор настоящей статьи лично наблюдал, как летом 1995 года на большом степном пруду в Кировоградской области (Украина) на глубокой яме под ЛЭП-500 была поймана щука массой почти 10 кг, несомненно, обитавшая там (а не приплывшая откуда-то!) Это притом, что хищница относится к рыбам с наибольшей чувствительностью к воздействию электрического тока.

По мере удаления от линии электропередачи напряженность электрического поля резко уменьшается, поэтому можно говорить об ограниченной зоне электромагнитного загрязнения водоема шириной не более 15-20 метров. Хотя в масштабах большой реки или озера зона электромагнитного негативного влияния может измеряться сотнями квадратных метров.

По мнению новосибирских ученых, при нормальном режиме эксплуатации воздушных линий электропередачи опасная для рыб плотность тока может образовываться только ЛЭП-750 и выше (Войтович, 1998). При прокладке подводных кабелей напряженность электромагнитного поля низкая, если фазы укладываются в треугольник в траншее, вырытой на дне водоема (Данилов и др., 1991).

Специалисты из Новосибирска предложили минимизировать негативное воздействие на ихтиоценозы путем снижения мощности, передаваемой по воздушным и подводным линиям электропередачи, в ключевые периоды жизни рыб — во время нерестовых миграций и нереста; увеличения толщины экрана и брони на кабельных подводных линиях триаксиального исполнения.

Гидробионты и электролов. На многих водоемах СНГ применяется электролов рыбы. Самыми производительными орудиями электролова являются электрифицированные тралы, во время работы которых возникают значительные по величине электромагнитные поля. Электротралы систематически применяются на верхневолжских водохранилищах (в том числе на Горьковском и Рыбинском), в Костромской и Ивановской областях.

В работе применяется электроловильный комплекс ЭЛУ-6М, используется импульсный электрический ток напряжением 450 В и частотой от 20 до 70 Гц (Асланов, 1996).

Осенью 1998 года Институтом биологии внутренних вод РАН (пос. Борок) при участии представителей бассейнового управления Верхневолжрыбвод и Геофизической обсерватории ИФЗ РАН на Горьковском водохранилище проводились комплексные исследования экологических последствий применения ЭЛУ-6М.

Экспериментальные траления с включенными и выключенными электроподборами показали более высокую эффективность электротралового лова рыбы в сравнении с обычным. Мировой опыт эксплуатации систем электролова в морях и пресных водах свидетельствует о том, что электрическое поле обычно повышает уловистость трала на 2-70% (иногда даже более 200%!) Главный эффект от электрификации тралов достигается за счет дезориентации рыб, снижения их подвижности, появления угнетенности, сгона рыб со дна, удерживания пойманных рыб в кутке.

Многочисленные эксперименты показали, что электротрал оказывает положительное влияние на размерный состав пойманных рыб: крупные особи более чувствительны к действию электротока и чаще оказываются в орудиях лова.

Исследователи выяснили, что уловистость близнецового трала в вечерне-ночные часы по сравнению с дневными была на 296-369% выше. Наиболее часто в электротрал попадались густера, судак, щука, жерех, язь, плотва и налим, практически игнорировали наведенные электрические поля и не попадали в орудия лова синец, чехонь, серебряный карась, белоглазка, берш и уклея). Причем серебряный карась чаще отмечался в обычном трале, чем в электрифицированном.

Интересны данные о выживаемости и плавательной способности рыб после попадания в сильное электрическое поле. В ходе дневных и ночных визуальных наблюдений за поверхностью воды (Горьковское водохранилище) на акватории протяженностью более 15 км позади электротрала погибшей рыбы не обнаружено, только 2,6% от общего числа пойманных рыб всплывали на поверхность в состоянии электронаркоза (некрупные жерех, чехонь и уклея). Полное восстановление плавательной способности у рыб происходило мгновенно. Причем более мелкие рыбы восстанавливались после воздействия электрического поля намного быстрее крупных. Например, у 30-сантиметровых жерешат восстановление занимало несколько секунд, а у 43-47-сантиметровых — более 6 минут.

Анализ проб зоопланктона и зообентоса показал отсутствие отрицательных воздействий электрического поля на водных беспозвоночных (Извеков, Лебедева, 2001).

Большинство литературных данных свидетельствует о том, что при соблюдении правил рыболовства и инструкций по эксплуатации ЭЛУ электрическое поле оказывает на рыб в основном дезориентирующее влияние и не приводит к гибели рыб или длительному нарушению плавательных способностей.

"Действие электрического тока на рыбу объясняется различной электрической проводимостью воды и тела рыбы: последняя оказывается своего рода проводником, соединяющим точки электрического поля с разными потенциалами. Электроток течет по этому проводнику от точки с более высоким потенциалом к точке с более низким. При этом сила тока пропорциональна длине рыбы".

Несколько неожиданное подтверждение данным, полученным российскими учеными, получили сотрудники Института биологии Днепропетровского национального университета (Украина). В конце июля 2003 года экспедиционная группа ихтиологов стала свидетелями удара молнии в пойменное озеро близ Днепра. Спустя пять минут ученые оказались на месте происшествия. Мгновенно наведенное сильнейшее электромагнитное поле ввело в электронаркоз более 30 крупных лещей (от 1 до 2,2 кг) и пестрого толстолобика массой более 31 кг. Мелкой рыбы, а тем более малька, в изобилии кормившегося на мелководьях, среди пораженной рыбы не было ни на поверхности, ни на дне. Следовательно, чувствительность крупных особей к электрическим полям оказалась на порядок выше, чем у "мелочи".

Электробраконьерство. Промышленные орудия электролова разрабатывались учеными на протяжении нескольких десятилетий, определялись пороговые значения напряженности электрического поля, влияние использования электротралов на водные системы, возбудимость многих видов рыб при разной напряженности электрического поля в воде. Только после скрупулезных научных исследований орудие лова рыбы такого рода было рекомендовано к использованию в некоторых естественных водоемах.

Принцип действия "электроудочки", которая состоит на вооружении у браконьеров, основывается на поражении любой рыбы запороговыми значениями напряженности электрического поля. "Снасть" состоит из подсачека, к которому подведены провода от аккумулятора и трансформатора-преобразователя, усиливающего разряд от аккумуляторных клемм в 50-150 и более раз. Фактически, на выходе "электроудочка" имеет до 1000-1500 В, радиус "работы" в зависимости от солевого и минерального состава воды — до 10-12 метров.

При включении прибора в воде напряженность электрических полей может достигать 150-250 мВ/см, а плотность тока в воде превышает 30 мкА/мм2. Такие градиенты потенциала губительны для всего живого под водой. Удар электрическим током у рыб приводит к мгновенному сокращению всех мышц, в результате чего ломается позвоночник, разрывается плавательный пузырь, происходит кровоизлияние во внутренние органы рыб. Животные, попавшие непосредственно в эпицентр действия "электроудочки", практически сразу погибают, те, кто в момент электроудара находился на периферии, получают сильный шок, застывают в наркотизированном ступоре на несколько минут. До 70% рыб в эпицентре получают разрывы плавательных пузырей и тонут, устилая дно водоема толстым слоем.

Такие картины наблюдались спортсменами-подводниками на днепровских водоемах неоднократно.

Кстати, рыба, которой посчастливилось уплыть из зоны поражения и сачка браконьера, в течение нескольких сезонов не имеет возможность отнереститься из-за образующихся в половых путях спаек. В июле 2001 года на Днепродзержинском водохранилище рыболовами-любителями О. Старушенко, С. Зуевым, Р. Новицким была подобрана с поверхности воды погибающая 17-килограммовая самка сазана. Анатомический анализ показал, что, вероятно, рыба стала жертвой электробраконьерства: во внутренней полости находилось более 6 кг икры, выметать которую рыбина не могла из-за пресловутых спаек в яйцеводах, на гонадах и других органах отмечались многочисленные кровоизлияния.

Учитывая, что ущерб, наносимый природе электробраконьерством, огромен и не поддается точному исчислению, в настоящее время такая "рыбалка" согласно действующему законодательству приравнивается к уголовным преступлениям…

Р. Новицкий , кандидат биологических наук, доцент кафедры зоологии и экологии Днепропетровского национального университета. Профессиональный ихтиолог.

"Спортивное рыболовство № 2 — 2004 г."

Внимание!

В качестве исходного материала использована статья с сайта "Калининградский рыболовный клуб "



О существовании удивительных морских скатов и пресноводных сомов, способных наносить людям довольно неприятные и труднообъяснимые «удары», знали ещё древние греки и египтяне. Изображения этих сомов и скатов и сейчас ещё можно увидеть на стенах древнеегипетских гробниц.

Римляне считали, что скаты выделяют в воду какое-то ядовитое вещество. Было замечено, что «яд» выделялся, только когда появлялась добыча или на рыбу кто-то нападал. «Яд» действовал и на человека, причём прямо через кожу, но не был смертелен. Прикосновение к рыбе ощущалось как удар, рука невольно отдёргивалась. В

Древнем Риме таких скатов держали в специальных бассейнах и пытались использовать для лечения болезней. Больных заставляли прикасаться к скату, и от его «ударов» они будто бы выздоравливали.

Тайна скатов была разгадана сравнительно недавно. Оказалось, что эти рыбы яда не выделяют, а обороняются и нападают с помощью электричества. Напряжение разрядов электрического сома и электрических скатов достигает 220 В. (Такое же напряжение тока существует в городской бытовой электросети.)

Электрические скаты (их около 30 видов) - малоподвижные существа, плохо и неохотно плавающие. Большую часть жизни они проводят, зарывшись в песок или ил, оживляясь только для того, чтобы разрядить свои «батареи» и перекусить тем, что подвернулось. Свою основную добычу - мелких рачков и червей, поражённых электрическим разрядом, они подбирают без особой спешки. На крупную, уже оглушённую рыбу скаты бросаются стремительно и продолжают генерировать электрические разряды, чтобы окончательно добить её.

Электрический угорь (он совсем не «родственник» прочих угрей и назван так только за сходную форму тела), обитающий в пресных водах Южной Америки, - рыба с самым сильным электроразрядом. Размеры её немалые - до 1,5 м, а иногда и до 3 м в длину при весе до 20 кг. Напряжение создаваемых электрическим угрём разрядов достигает 600 В. Его разряд может оглушить даже крупных зверей, а мелкие животные погибают мгновенно. На языке местных индейцев эти угри называются «арима», что значит «лишающие движения». Индейцы хорошо знают опасных рыб и не рискуют переходить вброд реку, где они обитают.

Электрические органы - это видоизменённые мышцы. При сокращении любых мышечных волокон всегда возникают слабые электрические разряды. Особенность электрических органов в том, что их мышечные волокна «подключены» (т. е. соединены между собой) не параллельно, а последовательно, поэтому их напряжение суммируется, достигая огромных величин. Вес электрических органов составляет от четверти до трети веса рыбы!

Многие рыбы не имеют « электростанций », но обладают «электрическим чутьём». Например, миноги с его помощью обнаруживают добычу. Спрятаться от них невозможно. Даже у затаившихся рыб дыхательные мышцы жаберных крышек продолжают сокращаться, одновременно генерируя слабые электрические импульсы. Их и улавливают миноги. Это чутьё особенно полезно при охоте в мутной воде.

Африканский электрический сом.

Американский электрический угорь.

Электрический скат.

Идеи различных изобретений человек, как правило, находил в окружающей его природе. Так, в первых проектах летательных аппаратов копировалось крыло птицы или летучей мыши. К изобретению самозатачивающихся инструментов привело исследование зубов грызунов. Создаются искусственные покрытия для подводных лодок, копирующие кожу дельфина, которая позволяет ему передвигаться в воде с большой скоростью при относительно небольших мышечных усилиях.

Помимо копирования биологического прототипа при конструировании различных систем возможно (и, видимо, наиболее целесообразно) использование самого принципа действия, разработанного природой в процессе эволюции. Работы в этом направлении привели к возникновению одной из самых молодых наук - бионики, в настоящее время быстро развивающейся.

Бионика - это наука о системах, копирующих функции живых организмов, о системах, которым присущи специфические характеристики природных систем или которые являются их аналогами. На практике бионика - это наука об использовании знаний о живых системах при решении тех или иных технических проблем.

Особенности реакций рыб на различные поля электрического тока послужили основой для разработки различных устройств, управляющих поведением рыб. Еще в 1919 г. ученые высказали мысль, что лов рыбы с применением электричества открывает широкие перспективы в ведении прудового хозяйства. Вначале использовалось лишь оглушающее действие электрического тока. В дальнейшем стали применяться агрегаты, привлекающие или отпугивающие рыбу благодаря создаваемым в воде электрическим полям различных параметров.

В настоящее время такие агрегаты с успехом используются на практике в пресноводных водоемах: реках, прудах, озерах, водохранилищах. Один из способов электролова - оснащение обычных сетных орудий лова (например, тралов) электродами, привлекающими рыбу в зону действия орудия. Так работают, например, отечественные электротраловые суда ПЭТС-150Б, ведущие лов на Рыбинском и Цимлянском водохранилищах с 1965 г. Во внутренних водоемах ГДР с 1967 г. применяется электрифицированный трал, в основном предназначенный для лова угря.

Кроме электролова с использованием различных сетей, существует так называемый бессетевой электродов, основанный на использовании анодной реакции рыб для их привлечения, концентрации, частичного обездвиживания в результате электронаркоза. Рыба извлекается из воды с помощью механического устройства или рыбонасоса. Таким образом работает, например, отечественная установка ЭЛУ-1 для электролова, размещаемая на двух лодках. С помощью специальной аппаратуры вырабатывается постоянный ток напряжением до 520 В, который поступает на систему электродов (анод и катод), подвешенную в воде. Привлеченную током рыбу выбирают сачками.

Аналогичная установка ЭЛУ-2 отличается тем, что работает на постоянном импульсном токе и может использоваться в водоемах с более широким диапазоном электропроводности воды. Бессетевой электродов рыбы с помощью рыбонасосов впервые был применен на лове камчатских лососевых на реках Озерной и Явиной.

В СССР применяется также батарейный агрегат "Пеликан", предназначенный для лова рыбы, сконцентрированной на глубине 1,5-2 м; его производительность - более 1-2 ц рыбы в час. Аналогичные агрегаты разработаны и в других странах.

В рыбном хозяйстве применяются и так называемые электрозаградители, отпугивающие или останавливающие рыбу. С помощью таких установок рыбу заставляют двигаться в определенном направлении. В этом случае электрическое поле, как правило, неподвижно и расположено поперек движения реки. Рыба, оказавшаяся в зоне действия поля, останавливается или уплывает обратно.

Устройство, создающее электрическое поле для отпугивания акул, разработано в США. Прибор устанавливается на траулере и ежесекундно излучает мощные импульсы длительностью 10 м/с через два буксируемых электрода. Малогабаритная модификация этого прибора, собранного на транзисторах, используется водолазами (электроды помещаются в скафандр). Источником тока в нем служат обычные сухие батареи, емкость которых рассчитана на 8-10 ч работы. Эксперименты показали, что акулы не приближаются к водолазу, снабженному подобным прибором, ближе, чем на 2 м. Прибор собрал на транзисторах и заключен в водонепроницаемый корпус из эпоксидной смолы.

Сотрудниками Государственного научно-исследовательского института озерного и речного хозяйства (ГосНИОРХ) разработана электрорыбозаградительная установка, предназначенная для отпугивания рыбы от гидротехнических сооружений: турбин гидростанций, оросительных каналов, в которых рыбы травмируются и гибнут. Установка состоит из большого количества электродов - стальных труб, забитых в грунт. На электроды поступает прерывистый переменный ток.

По такому же принципу работают электрогоны, используемые при лове рыбы. В качестве примера рассмотрим электрогон типа ЭРГ 1/8-4. Он представляет собой однородную систему электродов, поддерживаемых на плаву полиэтиленовыми поплавками. На тележке, движущейся вдоль берега реки, установлен бензиновый двигатель с генератором мощностью 4 кВт, вырабатывающим ток напряжением 230 В. Через преобразователь и трансформатор ток по кабелю длиной 100 м поступает на электроды. Рыбаки, находящиеся по обоим берегам, тянут систему электродов вдоль реки, сгоняя рыбу в невод, установленный ниже по течению. Такой электрогон применяют на водоемах шириной до 50 м и глубиной до 2 м.

Методы лова, основанные на использовании электрических полей, имеют следующие преимущества: они универсальны (их можно применять для лова различных видов рыб с помощью разнообразных орудий лова) и эффективны (обеспечивают избирательность вылавливаемых рыб по виду и размеру, позволяют автоматизировать процессы лова).

Однако электродов в морских условиях находится пока еще в стадии экспериментов. Это вызвано большим расходом энергии даже при использовании полей импульсного тока. Тем не менее электролов морских рыб весьма перспективен, и в данном направлении ведутся многочисленные исследования и разработки. Так, в ГДР создана установка для электролова рыбы в море. Основа установки - импульсный генератор, вырабатывающий электрические импульсы; определены форма и частота, необходимые в различных условиях лова. Они подаются по кабелю на электроды, которыми оснащен трал, и создают электрическое поле. Действие поля распространяется на рыбу, находящуюся в его зоне, и препятствует ее уходу из орудия лова. Мощность импульсного генератора 75 кВт. В зависимости от напряжения электрическое поле может вызывать у рыб реакцию отпугивания или наркоза и даже гибель от шока. Эта установка позволяет вести лов на глубинах до 700 м. Уловы океанских траулеров ГДР, оснащенных такими установками, увеличились в среднем на 30%.

В СССР первые практические результаты бессетевого электролова с помощью рыбонасоса в морских условиях были получены в 1963 г. при ловле сайры. Рыбу сначала привлекали на свет. Затем создавали поле постоянного тока: катодом служил корпус судна, а анодом, к которому сайра подходила в результате анодной реакции,- всасывающие устройства рыбонасоса (рис. 18).

Основные препятствия на пути промышленного освоения такого способа лова - малая зона, в которой можно вызывать у рыб анодную реакцию. Опыты в этом направлении продолжаются, и установки бессетевого лова совершенствуются. Было, например, применено комбинированное воздействие на рыб полей импульсного и переменного непрерывного токов.

В 1971 г. на судне ГДР "Айсберг" специалисты ГДР и СССР проводили испытания устройства для электролова, в котором рыбонасос использовался совместно с сетным мешком (рис. 19). Это позволило вести лов на различных глубинах и отказаться от громоздких шлангов рыбонасоса.

Широкое промышленное внедрение различных способов электролова в море станет возможным в ближайшие годы.

Большое практическое значение имеет сопоставление биологических систем электролова, используемых электрическими рыбами, с существующими в настоящее время аппаратами промышленного электролова промысловых рыб. Приемы лова, используемые сильноэлектрическими рыбами, характер образуемых или импульсов и полей отработаны в процессе эволюции и, по-видимому, являются оптимальными. Отличие действия электрических полей рыб по сравнению с полями агрегатов, созданных человеком, заключается в следующем. Все электроловильные агрегаты характеризуются пассивным режимом работы, т. е. параметры образуемых ими электрических полей неизменны. Однако чувствительность рыб разных видов к электрическому току и их реакции на действие электрических полей различны. Разнообразны также результаты воздействия одного и того же электрического поля на рыб определенного вида, но разных размеров. Воздействие на рыб электрических полей зависит, как уже говорилось, от температуры воды, ее электропроводности, содержания кислорода, времени года, физиологического состояния, а также от характера электрического поля.

Таким образом, на поведение рыб при действии на них электрических полей влияют многочисленные факторы, которые в процессе лова могут изменяться. Между тем это не учитывалось при разработке существующих генераторов для электролова рыб. В этом отношении природа пока опережает человека. Электрические рыбы, использующие свои электрические поля для тех же целей, "работают" качественно иным образом - в активном режиме.

Все сильноэлектрические рыбы устанавливают активный контакт со своей жертвой (или врагом). Этот контакт осуществляется с помощью различных механизмов; зрения, слуха, осязания на расстоянии (использование органов боковой линии), а также пассивного или активного (локационного) электрического чувства. Электрические рыбы - угорь, сом, скаты, некоторые звездочеты - на расстоянии следят за поведением своих жертв или врагов и, оценив их и свои возможности, применяют биоэлектрические поля определенной мощности, конфигурации и периодичности излучения. В результате достигаемый эффект бывает, как правило, оптимален. Так, сом, не имеющий электролокационной системы, оценивает свою жертву, активно двигаясь и излучая сильные электрические разряды. Разряды стимулируют жертву, заставляя ее активно двигаться и создавать потоки воды, благодаря чему сом получает информацию о жертве с помощью органов чувств боковой линии. В соответствии с размером жертвы он использует разряды определенного характера.

Таким образом, основное принципиальное отличие искусственных систем электролова от природных - отсутствие контроля над состоянием и поведением объекта лова и управления работой электрогенератора. Иными словами, отсутствуют обратная связь и система управления по заданной программе. Кибернетический подход при разработке электрических устройств для привлечения или отпугивания рыб, несомненно, перспективен. Такие устройства позволят вылавливать рыбу определенного вида и не травмировать других рыб.

Другое преимущество природных приемов лова и отпугивания рыб, основанных на применении электрических полей, состоит в том, что электрические рыбы, как правило, используют комбинации сигналов разной модальности. Параллельно с генерированием электрических полей определенного характера они излучают электрические поля иных параметров, звуки, оптические сигналы, а также используют побочные действия электрического тока (гидродинамические возмущения, обогащение воды кислородом). Угорь, например, во время охоты часто комбинирует постоянное и импульсные поля. В заморных водоемах его разряды обогащают воду кислородом, который и привлекает к угрю мелких рыб и лягушек. Американский звездочет подманивает жертву, периодически выбрасывая красный язычок, похожий на червяка. Хищник оглушает электрическим разрядом подплывающих рыб и захватывает их.

Электрический сом в оборонительных ситуациях совместно с электрическими разрядами испускает характерные резкие шипящие звуки. Такие звуки, хорошо распространяющиеся в воде, усиливают действие электрических полей (безусловнорефлекторный раздражитель) и приобретают значение сигнала предупреждения (условнорефлекторная реакция). Воздействие электрических пульсирующих полей, сопровождающихся акустической пульсацией такой же частоты, может привести верховку в шоковое состояние (электронаркоз), хотя напряженность этих полей недостаточна для достижения подобного результата.

Эффективность воздействия на рыб электрических полей в комбинации с другими сигналами очевидна. Между тем в практике рыбного хозяйства разработки устройств, основанных на комплексном действии различных сигналов, только начинаются. Так, при разработке некоторых приемов бессетевого лова электрические поля удачно комбинируются со светом.

В Мексиканском заливе была испытана система, которая состояла из стоящей на якоре платформы, окруженной большим количеством пластиковых плотов, напоминающих по форме палатки. Известно, что в дневное время некоторые виды рыб ищут затемненные места, где чувствуют себя в большей безопасности, и собираются под плавающими на поверхности воды предметами. В данном случае рыбы днем собирались под плотами, а с наступлением темноты свет электрических ламп привлекал их к центральной платформе, где под воздействием электрического поля они сразу же попадали в зону всасывания рыбонасоса.

Для отпугивания рыб от плотин эффективно применение электрических полей в сочетании со звуковыми сигналами. В спортивном рыболовстве возможно применение электрических удочек, привлекающих рыбу с помощью двух различных раздражителей: обычной, "зрительной", приманки и электрического поля, вызывающего у рыб анодную реакцию - стремление приблизиться к положительному электроду.

Таким образом, одно из перспективных направлений при разработке новых приемов использования электрических полей в рыбном хозяйстве - комбинирование их с другими сигналами.

Большой интерес для электробиологии представляет сопоставление полей, используемых электрическими рыбами для лова и обороны, с полями, применяемыми в практике рыболовства. Все рыбы и в пресной и в морской воде создают импульсные электрические поля: в морской воде, в связи с ее большей проводимостью, они характеризуются невысокой напряженностью и значительной плотностью тока, в пресных водоемах имеют высокую напряженность и малую плотность тока. Электрические поля постоянного тока рыбы не применяют, по-видимому, из-за большого расхода энергии для их генерации.

Каковы характеристики импульсных электрических полей рыб и их отличие от полей, разработанных экспериментально и применяемых в практике рыболовства?

Относительно действия на рыб искусственных импульсных электрических полей существуют различные, иногда противоречивые мнения. Большинство исследователей, сопоставляя действие импульсных и постоянных или переменных полей, утверждают, что импульсные поля обычно не возбуждают у рыб анодной реакции, а лишь отпугивают их. Однако электрические рыбы, используя импульсные поля, фактически управляют поведением своих жертв или врагов, заставляя их двигаться к себе или спасаться бегством. Характерно, что импульсные поля, применяемые всеми электрическими рыбами для привлечения жертв и обороны, различны.

Так, охотничьи разряды сома состоят из гораздо большего количества импульсов, чем для обороны. Если оборонные включают 3-67 импульсов, то охотничьи - 14- 462 импульсов (в среднем меньше 300). Другая отличительная особенность - различие в характере изменения частоты их следования. В оборонных разрядах частота следования импульсов снижается резко быстро, в охотничьих - медленно, постепенно.

Длительность и число импульсов в охотничьих разрядах связаны с соотношением размеров сома и его жертвы. При захвате и заглатывании мелких объектов разряды относительно коротки - в среднем 71,2 импульса. Сом длиной 16 см при захвате рыбы размером 5,5 см (менее 30% длины сома) генерирует до 297 импульсов (при средней продолжительности разряда 4,8 с). В технике электролова, основанного на импульсных полях постоянного тока, количеству импульсов, обеспечивающих анодные реакции, придается большое значение.

По мнению некоторых ученых, от числа импульсов зависит эффект привлечения, отпугивания или оглушения рыбы. Исследования показали, что для каждого вида (и размера) рыб в привлекающем или отпугивающем их электрическом разряде существует оптимальное количество импульсов. В процессе охоты частота следования импульсов у сома меняется. Она увеличивается или уменьшается в зависимости от поведения и состояния жертвы. В самом начале частота следования импульсов достигает максимальной величины (до 150 импульсов з секунду при температуре 28°), а в конце она падает. Но снижение частоты в зависимости от поведения объекта может смениться повторным и даже многократным ее возрастанием. Амплитуда разрядов и импульсов сома относительно невелика (180-360 В). У сома длиной 21 см средняя мощность разряда обычно составляет 8 Вт, а максимальная мощность каждого импульса - 32 Вт.

Ученые, исследовавшие действие на рыб сильных электрических полей, установили, что анодная реакция проявляется у них при определенных значениях как частоты импульсов, так и напряжения. Для пресноводных рыб длиной от 6 до 27 см критические значения частоты следования импульсов, вызывающих анодную реакцию, составляют 30-100 импульсов в секунду. Разряды с более высокой частотой импульсов при тех же величинах амплитуды вызывают у рыб электронаркоз. Таким же образом влияет на рыб и увеличение амплитуды (напряжения) импульсов.

Токи, используемые при электролове пресноводных рыб, обычно достигают напряжения 800 В при мощности импульсов 80-400 Вт. Поэтому естественно, что электрические агрегаты, работающие в постоянном режиме (при неизменной частоте и напряжении импульсов), создают не только зону привлечения (вдали от электродов), но и зону наркоза вблизи электродов, в которой рыба впадает в шок и гибнет. Именно в связи с этим применение существующих агрегатов для лова рыбы наносит существенный ущерб рыбному хозяйству.

Импульсы же, используемые для охоты электрическими рыбами (угрем, сомами и др.), имеют характерную форму и продолжительность. Как правило, это импульсы с крутым фронтом нарастания тока и постепенным его снижением. Другими словами, в начале импульса напряжение быстро повышается, а затем постепенно снижается. У электрического угря такие импульсы имеют пилообразную форму (см. рис. 4), у электрического сома форма импульсов сходна с формой нервно-мышечных импульсов (см. рис. 5).

Импульс электрического сома длиной 15,5 см имеет длительность, равную 1,88 мс. Резкое возрастание амплитуды длится 0,66 мс, а постепенное снижение - 1,22 мс.

Целесообразно сопоставить форму и продолжительность импульсов электрических рыб с аналогичными характеристиками оптимально действующих импульсов, полученных в опытах по действию на рыб искусственных электрических полей. Оказывается, что наиболее эффективно на рыб действуют именно импульсы с крутым фронтом нарастания тока и постепенным его снижением при продолжительности импульса 1-1,5 мс. Это же подтверждают некоторые ученые, исходя из представлений физиологии нервно-мышечной системы.

Экспериментально установлено, что при малых значениях продолжительности импульсов (менее 1 мс) наименьшее напряжение, при котором у рыб появляется первичная реакция, требуется при использовании импульсов прямоугольной формы. Почему же импульсы некоторых электрических рыб "неоптимальны"? Ответ довольно прост. Для генерации прямоугольных импульсов (продолжительностью менее 1 мс) требуется больший расход мощности, чем для импульсов, используемых электрическими рыбами.

Таким образом, работа природных систем электролова и работа промышленных электроагрегатов по принципу действия различны, хотя форма импульсов электрических рыб близка к применяемой в промысле. Природные основаны на комплексном действии сигналов; промышленные, как правило,- на использовании только электрического поля. Первые характеризуются активным режимом, вторые - пассивным. Импульсы рыб, используемые при охоте, отличаются от искусственных большей длительностью, большей частотой следования и сравнительно малой мощностью. При этом надо иметь в виду, что создаваемые рыбами электрические поля невелики. Очевидно, что принципы действия природных систем электролова рыб более эффективны, чем используемые в промышленном рыболовстве, и это необходимо учитывать при разработке и совершенствовании электроловильных установок.

Исключительные перспективы открывает моделирование электрических систем локации и связи рыб. Передача сигналов в воде с помощью электрических полей имеет большое преимущество, так как радиоволны в водной среде практически не распространяются, а недостатком акустической локации и связи является высокий уровень фоновых шумовых помех. Как известно, пока электрической связи в подводной технике не существует. В настоящее время как в Советском Союзе, так и за рубежом ведутся серьезные работы по созданию подобной аппаратуры. Проведенное советскими исследователями неполное техническое моделирование электрической системы связи рыб уже привело к разработке устройства, позволяющего осуществлять передачу информации из воды в воздух. Дальнейшие работы в этой области будут иметь огромное значение для развития техники подводной связи, столь необходимой, например, в океанологии и рыбном хозяйстве.